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Quantum theory of non-ideal photon detectors 

Martine Rousseau 
Laboratoire d’Etude des Phenomenes Aleatoires, Universite de Paris-Sud, BLtiment No. 210, 
91405 Orsay, France 

Received 9 October 1974, in final form 18 March 1975 

Abstract. We study the signal emitted by a narrow-band photon detector which receives a 
broad-band electromagnetic field. The statistical properties of the signal are shown to be 
completely different from those in the usual case of an ideal photon detector receiving a 
quasimonochromatic field. 

1. Introduction 

It is now proved that the photoelectrons emitted by a usual detector are set as a com- 
pound Poisson distribution. 

This result was a postulate in classical theory (Mandel and Wolf 1965) but has been 
proved with the help of quantum description of the detection mechanism by Glauber 
(1965) in the case of independent atoms. A full quantum theory taking account of 
interactions between atoms inside the detector was recently presented by Rocca (1971), 
who showed that the corrective terms are negligible in practical counting experiments 
(Arnedo and Rocca 1974). Therefore we shall consider independent atoms and use 
Glauber’s description. Ideal photodetectors act through a one-photon process, by 
atomic ionization (or excitation in semiconductors), without any intermediate stage, and 
the spectral width Aw of the detector sensitivity function S ( o )  (Glauber 1965) is much 
broader than the spectral width 60 of the incident light (cf figure l(a)). In that case 
Glauber showed that the temporal density of the photoelectron Poisson process is, for 
a quasimonochromatic incident field 

Z(t) rc I & ( t ) l Z  (1) 

where 8(t) is the analytic signal (Born and Wolf 1964) associated with the incident field, 
ie the eigenfunction of the positive frequency part of the EM field. In this paper we still 
suppose independent atoms but we do not restrict ourselves to the case of ideal photo- 
detector for which 6w << Aw. For arbitrary value of 60 and Aw, we prove that the 
photoelectrons are still distributed as a compound Poisson process and we derive its 
density. We thus prove that we do not obtain the same results if we detect a broad-band 
signal with : 

(a) an ideal broad-band photodetector, after filtering the signal (this is Glauber 
case), see figures l(a) and 2(a), 60 << Aw; as we would with : 

(b) a narrow-band detector, without any filtering before the detection process, see 
figures l(b) and 2(b), 60 >> Aw. 
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Figure 1 .  Spectral distribution ydw) of the EM field with regard to the atomic ionization 
levels la,) of the detector. (a)  A broad-band detector receives a narrow-band signal, Aw >> Sw. 
(b) A narrow-band detector receives a broad-band signal, Aw << Sw. 

I 

R ( t )  
G ( w )  

Figure 2. (a) An ideal photodetector, with a broad-band ionization level, receives a quasi- 
monochromatic field. The incident field &([) is filtered before the detector, so that 8F(t) has a 
spectral width 60, << Am. The signal is i(t) = l&F(t)12. (b)  A non-ideal photodetector receives 
a broad-band mi field. How is the signal? 

2. Ionization rate of a non-ideal detector receiving an arbitrary EM field 

Let us apply the quantum theory of atomic detectors when we suppress the two restricting 
hypotheses introduced by Glauber (1965) : 

6 0  >> wg, 

Aw >> dw, 

monochromatic field (G, )  

ideal photodetector (G2). 

Hereafter we will consider two arbitrary spectral widths 6w and Am. We assume 
that photoelectrons are emitted 

only by one-photon processes, (G3)  ( 3 )  

ie there is no resonant intermediate level which is able to participate in the ionization 
process, and the incident flux is not sufficient to introduce multiphoton processes. Let us 
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apply perturbation theory to the system detector plus EM fieid. The interaction Hamilton- 
ian between the atom and the field is 

= - e C q y ( t ) . E ( r , t ) .  
Y 

(4) 

According to the first-order perturbation theory, the state of the system at time t 
can be deduced from the state at time to using the relation 

I t )  = U(t, to) l to)  = 1 +- ;rEq(t') dt' I f o ) .  ( x 1 
The transition probability amplitude from the initial state Igi) of the system at time to 
to the final state laf) at time t, where g and a refer to atoms, i and f to the field, is 

where 

Ido,,, represents the atomic part of the Hamiltonian at  time t o .  If we introduce the atomic 
transition momentum 

we have 

(4 Cy qy(t')lg) = Mag exp(ioagt'). 

Equation (6) becomes 

(aflU(t, to)lgi) = exp(iw,,t')M,,(f(E(r, t')li) dt' 

In the right-hand side of equation (8), when we are interested in times t such that 
t - t o  >> l/wag, the only frequencies which contribute to the integration are the positive 
ones. Whatever the value of the spectral width of the incident EM field (if condition G 3  
is fulfilled) the expression J T  2 exp[i(wag + q ) t ' ]  dt' always vanishes when ("k + wag) is 
strictly positive. We can thus put E+(r, t') in place of E(r, t) in equation (8). This property 
corresponds to the energy conservation principle ; ie the atom is ionized by absorbing 
one photon. Processes where excitation of the atom takes place with emission of a 
photon are thus eliminated. 

The ionization probability F ( r )  of an atom which absorbs one photon is thus, 
at time t ,  the mean value over all initial states li) of the field, of the square of the transition 
probability amplitude C, I(afl U(t ,  to)lgi)12 weighted by a function R(a) which depends on 
geometrical characteristics of the detector 
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where 

P,,,(t) = (i)’ 7 exp[io,,(t”- t’)]M,,M,*, Tr(pE-(t’)E+(t”)) dt’ dt”. 
to 

Let us introduce the spectral response function of the detector 

and its Fourier transform, which we call the atomic impulse function, 
+9)  

S(t )  = S(w) eiwt d o .  (12) 
2n -c g  

The atomic transition frequencies wag are positive so that the function S(w) characterizing 
the ionization level is nonzero only for w > 0 and the atomic impulse S( t )  satisfies 

S(t )  = S*( - t). (13) 

The probability that the atom is excited at time t ,  i f  it received the light since time t o ,  
can thus be written 

P(’)(t) = /J S(t” - t’)G(’)(t’, t ” )  dt’ dt“ 
10 

where G(‘)(t’, r ” )  is the first moment of the EM field (Glauber 1965) 

G(’)(t’, t ” )  = Tr(pE-(t’)E+(t”)). (15) 

The ionization rate, or ionization probability per unit time is the time derivative of 
P‘ ’( t )  

w(’)(t) = 1: (S( t  - t ’)G(’)(t, t ’ )+ S(t‘-  t)G(‘)(t ’, t)) dt’ 

where t o  corresponds to the beginning of irradiation of the atom. 
If the EM field is stationary 

w(i)(t) = 11 (s(e)r,(e) + S( - e)r,( - e)) de, 

in this equation we used the classical notation 

(17) 

r,(e) = (&yt)a*(t - e ) )  = G(’)(c, t - e), (18) 

which implicitly uses the correspondence between the analytic signal &(t) (which is a 
random function), and the eigenvalue &(ak, t) of the field operator E - ( t )  in the quantum 
theory. Both descriptions are indeed identical when we use the P-representation 
(Glauber 1963) 

r,@) = j”’j-+e P{ak)&(ak, t)d*(ak, t-0e)nd2ak. (19) 

Let us compare the one-photon counting rate w“) ( t )  in the two cases of figures 2(a) and 

30 k 
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2(b) ; we detect the same stationary light, with spectral width 60, in the two following 
manners : 

(a) with an ideal photodetector ( S ( t )  = 6(t)) using a filter of gain G(o)  which reduces 
the spectral width of the incident light; 

(b) with a narrow-band detector without any filter. 
We shall take the atomic impulse such that 

S(w)+S*(o) = IG(o)12. (20) 

In these two experiments the initial field is filtered, but in the first case it is before detec- 
tion, in the second case the detector acts as a filter. 

The counting rates are given in case (a) by equation (4.22) of Glauber (1965), and in 
case (b)  by equations (1 7), (1 8) of this paper 

where y8(o) is the incident field spectrum before filtering. In the limit where t o  = - z, 
we use equations (12) and (13) to obtain from equation (17) 

w p ( o )  = /-+I s(e)r,(e) de + cc = (~(0) + s*(o))y,(o) do,  /-+xm 
where cc stands for complex conjugate. 

In conclusion, if we choose the atomic response S(w) satisfying equation (20), the 
counting rate w")(t) tends to the same value for to -, - CO, where the EM field is filtered 
by the detector or by placing a filter in front of it. 

3. N-fold coincidences 

With the previous hypothesis (GJ as in 5 2, the probability that n photons are absorbed 
from the field by n atoms of the detector ionized from their ground state (I{g}) + l{aj})), 
is given by the n-fold term of perturbation theory. We can thus show that the probability 
transition amplitude from an initial state li) of the field to a final state If) having n 
photons less, is still the matrix element of equation (5.7) (Glauber 1965) 

The absorption probability of n photons, P'"'{ t j }  between ( t o ,  t j )  ( j  = 1,. . . , n), is 
obtained in the same manner as P")(t) (cf 0 2), we have to start from the square modulus 
of equation (23), sum it over all the final states of the field, take the mean value over the 
initial states li) of the field and weight the new expression by the functions R(aj) which 
depend on the geomttrical characteristics of the detector. Then we obtain 

P'") { t j }  = f' . . . f" ( fi S ( t ;  - t;) G(")({t;} ; { t ; } )  dt; dt; 
fo io j = 1  

where 

G(")({t;}, { t y } )  = Tr(pE-(t;). . . E-(th)E+(t:). . . E+(t';)), (25) 
and S(0) is still defined by equations (ll),  (12). 
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(a) For an ideal photodetector which receives a quasimonochromatic signal over a 
broad band level, do >> 60, we put S(0) = d(0) in equation (24) which becomes equation 
(5.12) of Glauber (1905), 

The n-fold coincidence probability at time { t i }  is generally related to P(") by the 
relation 

For an ideal photodetector, equation (26) gives 

w("){ t i }  = G'"'({ t i } ,  {ti}). 

(b) For an arbitrary detector for which Ao is not much greater than 60, the n-fold 
coincidence rate is obtained from equations (24), (27) 

W ( " ) { t i }  = . . . 1'" dt;S(t; - t!)Gcn)({t;}, { la}).  (29) 

In the integration over the variable ti ( i  = 1 , .  . . , n), we introduced the indexes a and /3 to 
signify that the couple ( t ; ,  $)is either ( t i ,  ti) or ( t i ,  ti). The second member of equation (29) 
is thus a sum of 2" terms corresponding to all possibilities of the ensemble { t l  . . . I,, 
t: .  . . t : }  where ti  and ti can be exchanged for every i = 1 . . . n. 

couples(t,,t;) 10 t o  
and KJ,)  

We notice that the n-fold coincidence rate is a real function, for 

G("){rf, t;} = (G(")(t;, if))*, 

and S ( t )  satisfies equation (13); w("){ t i }  can thus be expressed as a sum of 2"-' terms 
associated with their complex conjugates. For example, for n = 2, 

w c 2 ) ( t , ,  t,) = 1; dt; 1; dt;S(t, - t;)S(t, - t ; ) G ( 2 ! ( t , ,  t ,  ; t ; ,  t;)+cc 

+ [; dt; 1; dt;S(t,  - t ; )  S*(t, - t ; ) G ( 2 ) ( t l ,  t ;  ; t , ,  t ; )  + cc. 

Equations (28) and (29) are identical when we set S ( t )  = 6 ( t )  in equation (29), since 
f ( t )  d( t )  dt = *f(O). Each of the 2" terms of equation (29) is equal to (1/2")G@"'{ti, ti}. 
Let us return now to the two experiments schematized in figure 2 and compare the 

results we should obtain. 
If &(t)  is the analytic signal (AS) of the incident EM field, R(t) the response of the 

optical filter introduced in figure 2(a) before detection, with gain G(o), the n-fold coinci- 
dence rate at time { t i }  in case (a) is given by equation (28), 

w t ' { t , }  = (nil(& * R)(t i )12)  

= J + %  , . . J-+% fi R(ti-  ei)R*(ti-ei) de, d6;(b(B1). . . S(en)&*(en). . . &(e;)). 
- -z  It i = l  

(31) 
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In the case of experiment (b)  where the EM field &(t)  is not filtered before detection, 
the n-fold coincidence rate is given by equation (29) and 

wr){ti} = 

To compare equations (31) and (32), let us introduce the two following functions : 

f' . . . fn ( f I  dt; S( t7-  t t ) ) (&( t ; ) .  . . &(t;)&*(t!). . . &*( t { ) ) .  (32) 
couples(t,.ti) to  to i =  1 

and(t; , t , )  

&(f) = 1' &(6)R(t- 6) d6 
J-, 

ct 
(33) 

&(t) = J &(e) s*(t - 6 )  de, 
- I o  

where S * ( t )  = S ( - t ) .  These random functions result from linear filtering of the AS 
of the broad-band incident EM field through two linear filters. The filter F whose response 
function is R(t), and gain G(o) gives gF(t); the filter D whose response is S , ( t )  = Y(t)S*(t)  
gives &(t). (We call Y ( t )  the Heaviside step function introduced here to impose t > 0. 
Its gain should be G,(o) = S ( - o )  * vp(l/o) where vp(l/x) is the distribution which 
corresponds to the Fourier transform of Y ( t ) . )  Moreover, let us introduce the inter- 
correlation functions 

Gl;d),.ba,{ti' l i>  = ( 8 d , ( t l ) .  . . g b n ( t n w a * . ( t n ) .  . . &!,(cl)> (34) 

where each couple &!,(ti)) is either (&&), &*(ti)) or (&(ti), &:(ti)), the indexes d i  and 
S i  indicate whether we consider the incident random function &(t i )  or the filtered one 

With these notations, we can write the n-fold coincidence probability, for experiments 
schematized in figures 2(a) and 2(b), if we suppose that the detector is illuminated since 
t 0 -  - - m ,  

&D(ti). 

( g d ,  , Si,) = (d,W or (&D, &*I. 
The last results (equation (35)) coincide for n = 1, when we detect one photon, but do not 
coincide in the general case. 

For the ideal detector which receives a quasimonochromatic field gF(t), the n-fold 
coincidence rate is a 2n-moment of the narrow-band random function dF(t), but in case 
of experiment (b)  where the narrow-band detector receives broad-band light, the n-fold 
coincidence rate is a sum of 2n-moments where n narrow-band random functions gD(t) 
are associated with n broad-band random functions &(t).  

4. Photocounting distribution 

From the n-fold coincidence probability distributions Glauber (1965) calculated the 
probability distribution Am, T) that m photoelectrons are ejected by the photodetector 
during a time interval ( t o ,  to+  T). He showed that, with the hypotheses G , ,  G, ,  G, 
stated in 0 2 (cf equations (2), (3)), the emitted photoelectrons are distributed in time as a 
compound Poisson point process. 
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If we maintain the condition G,  (equation (3)), ie we do not consider multiphoton 
processes, but without any restriction on the spectral width of the incident beam, we 
can show that Glauber's result is still valid and that the photocounting distribution 
is given by (cf equation (17.35), Glauber 1965), 

with 

RTjakJ .  = 1"" 8*(t', { a k } ) b ( t " ,  ( a k } ) S ( t " -  t ' )  dt' dt". (37) 

In this equation, s(t, { a k } )  has the same meaning as in equation (19) of 0 2 ; and we have 
assumed the detector is point-like to simplify the notation and suppress the spatial 
integration over its volume. 

Equation (37) shows that the point process associated with the photoelectrons is a 
compound Poisson process whose density is 

This result corresponds to an experiment where the detector is only irradiated during 
the time interval ( t o ,  to  + 7') in these conditions p(m, t) represents the probability distribu- 
tion that during this time interval, T, the detector absorbs m photons and emits m photo- 
electrons by ionization. 

In the usual counting experiment, the detector receives the incident light during a 
long time interval ( -  CO, + CO) and we study the point process associated with the emitted 
photoelectrons. For example, we determine the distribution p(m, t )  that m photoelectrons 
are emitted between ( to .  to+ T )  for continuous radiation. In this case, we have to set 
to  = - CO in equation (29) so that the n-fold coincidence rate is given by equation (35). 
The probability distribution that n photoelectrons are emitted during the intervals 
{ t o ,  to+ T }  is then obtained from equation (29) with to  = - CO, 

r f n +  T ,  r f  

We can notice that equations (26) and (39) are identical when S ( t " - t ' )  = 6( t" - t ' ) ,  ie 
for the ideal photodetectors. This property is easily understood because an ideal 
photodetector acts instantaneously so that it gives the same results whether it is receiving 
radiation from time to or t o  = - CO. 

In the general case of a non-instantaneous detector, we have to take care of the time 
at which the detector is put in the light beam. Now we only consider equation (39) which 
corresponds to the usual experiments, in this case the counting distribution established 
by Glauber (equation (36)) is still valid but we have 

with 

p ( t )  = 5' d(t)S(t-8)8*(8)d6+cc. 
- x  



Quantum theory of non-ideal photon detectors 1273 

In conclusion, a photodetector with an arbitrary atomic impulse irradiated by an 
arbitrary EM field with condition G,, emits photoelectrons according to a compound 
Poisson process whose density is 

(42) A t )  = 8(0&W) + & D ( W * ( t ) ,  

where gD(t) is defined by equation (33). 
For an ideal photodetector equation (42) reduces to equation (1). 
This density p ( t )  (equation (42)), which is the signal obtained from the photodetector 

can be interpreted as the detected light intensity. 

5. Properties of the signal p(r) 

We study here some properties of the density p( t )  of the compound Poisson process 
emitted by a detector which obeys hypothesis G,. We use the classical formalism with 
random functions, but our results are quite true in quantum mechanics. 

5.1. Coherence time 

Equation (42) shows firstly that the signal p(t)  is the real part ofa product oftwo functions : 
&(t) whose coherence time is 7 c ( ~ c  = 1/60, cf figure I), and & * S* = &(t) whose coherence 
time is TD - sup(7,, T,) where T,  = l/Aw (cf figure 1). For example, in the case of 
figure 2(b), where a narrow-band detector receives a broad-band light, the signal obtained 
is thus the product of a quickly fluctuating function ( -  5 , )  and a slowly fluctuating 
function ( -  K ) ,  the signal will thus have a coherence time of about T ~ ,  and the detector 
will be able to follow the light fluctuations, however rapid they are. In every case, the 
coherence time of p ( t )  is the same as the coherence time z, of a([). 

We must nevertheless notice that in this case S ( t )  is constant during a time interval 
of about T ~ ,  so that &(t) and the signal both vanish. This property limits the scope of 
our conclusion. We shall now give an order of magnitude estimate of the signal. 

From equations (38) and (13) we have 

where S , ( t )  is the causal function Y(t)S*(t). 

of order T , ,  therefore we have approximately 
In the case of figure 2(b), the response function S,[u)  is constant over a time interval 

( P ( t ) )  - s(o)d-,(o). (44) 
In equation (44) we used the relation J’FS T(u) du - s,T(O) which is only rigorous 
for a rectangular correlation function of width 5,. Let us call s = S ( o  = 0) and 
T, = IIAm. Thus we have 

S 
S(0) - - 

Ta ’ (45) 

and 
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This equation shows clearly that the signal is very weak in the case given by figure 2(b), a 
narrow-band detector which receives a broad-band light emits a signal 6w/Ao times 
smaller than the intensity emitted by an ideal detector receiving the same light. This 
result is not surprising, for in case shown in figure 2(b), the detector does not observe the 
greatest part of the energy of the incident light. 

5.2. Bunching effect 

Let us derive the bunching effect (Glauber 1965) of photoelectrons emitted by our non- 
ideal photodetector ; it is commonly characterized by the normalized intensity correla- 
tion function 

In our case the signal correlation function can be obtained from equation (41): 

l-,(7) = ( P ( t ) P ( t  - 5 ) )  

= ffdOl d l ) , S , ( t - O , ) S , ( r - ~ - e ~ ) ( b ( t ~ ( t  - T ) 8 * ( e l ) 8 * ( e 2 ) ) + C C  

- 3 0  

+ js”dO1 do2 s , ( f - - l ) S T ( f - T - e 2 ) ( s ( t ~ ( e 2 ) s * ( e l ) 8 * ( f - T ) ) + C C .  (48) 
- m  

In order to calculate r,(s), knowledge of the spectrum of the incident field is not 
sufficient and we have to know more about the statistical propcrties of € ( t )  since r,(r) 
contains fourth-order moments of the field. 

Let us estimate the order of magnitude of T,(s) in the case of a chaotic field for which 
every 2n-moment of€(t)  can be written as a sum of n products of second-order moments 

rFh’(T) = [J: S(u)r,(u) du)  2 +  CC+ 2 !: S(u)r,(u) du 1; S*(ir)r:(u) du 

re(T), 

+ fom S(u)r,(u - T )  du S(u)T,(u + T )  du + cc JOE 
+ r , ( T )  j ~(t-~,~s*(t-7-e2)r , (e2-e , )de,  de2+cc .  (49) 

m 

In equation (49), the first three terms &re ( ( p ( t ) ) ( p ( t -  T ) ) )  (see equation (43)), the 
fourth and fifth terms are of order ~s(T)~2($Tc~r~(o)~)2, and the two last are of order 

r r  c 

We can use Parseval’s theorem and equation (45) to set 

1 f IS(u)12 du f S ( O ) ~  d o  - s2-. 
T,  
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Then we have (cf figure 3) ,  h ' c h ' ( ~ )  = 1 and 

This relation shows that in case of the figure 2(b) experiment, the photoelectron bunching 
effect is much greater than it would be in case of figure 2(a) for the same chaotic incident 
field. The normalized intensity correlation function has a maximum h(0) which is of 
order of the spectral width ratio between the incident field 60 and the detector Aco, which 
is much greater than unity in case of figure 2(b). While in case of figure 2(a), h(0) = 2 for 
the same chaotic incident field. 

Figure 3. Normalized correlation function h(r)  of the signal emitted by a non-ideal photo- 
detector. h(cc)  = 1,  h(0) = Bw/Aw for a chaotic field. The width of h ( r )  is of order T~ = l/Sw. 

We must emphasize that the width of T,(r) or h(r) is equal to rC. Therefore in order to 
measure h(r)  with the actual electronic performance we should use an incident field 
&( t )  whose coherence time is not smaller than 10- '' s ( rc  2 10- l 1  s, 60 < 6 x 10' ' Hz), 
and therefore a detector with spectral width Awa < 10' Hz. Let us discuss this point. 
There are two sorts of photodetectors, those acting by photoemission (for example 
photomultipliers) and those acting by photoconductivity (for example photodiodes) 
The spectral response is much narrower in the case of photoconductivity, the semi- 
conductor B-Ge is sensitive from 20 pm to 50 pm, its spectral width is about 1013 Hz 
(Lax and Mavroides 1967). 

The order of magnitude of Ama for such photodetectors is not very different from the 
actual electronic performance. It is almost reasonable to hope we shall be able to 
perform a photodetection under the conditions given in figure l(b) and verify our pre- 
dictions. 
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